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Mapping of Hydropedologic Spatial Patterns 
in a Steep Headwater Catchment

Hydropedology Symposium: 10 Years in the Past and 10 Years into the Future

A hydropedologic approach can be used to describe soil units affected by 
distinct hydrologic regimes. We used field observations of soil morphol-
ogy and geospatial information technology to map the distribution of five 
hydropedologic soil units across a 42-ha forested headwater catchment. Soils 
were described and characterized at 172 locations within Watershed 3, the 
hydrologic reference catchment for the Hubbard Brook Experimental Forest, 
New Hampshire. Soil profiles were grouped by presence and thickness of 
genetic horizons. Topographic and bedrock metrics were used in a logistic 
regression model to estimate the probability of soil group occurrence. Each 
soil group occurred under specific settings that influence subsurface hydro-
logic conditions. The most important metrics for predicting soil groups were 
Euclidean distance from bedrock outcrop, topographic wetness index, bed-
rock-weighted upslope accumulated area, and topographic position index. 
Catchment-scale maps of hydropedologic units highlight regions dominated 
by lateral eluviation or lateral illuviation and show that only about half the 
catchment is dominated by podzolization processes occurring under vertical 
percolation at the pedon scale. A water table map shows the importance of 
near-stream zones, typically viewed as variable source areas, as well as more 
distal bedrock-controlled zones to runoff generation. Although the catchment 
is steep and underlain by soils developed in coarse-textured parent material, 
patterns of groundwater incursion into the solum indicate that well-drained 
soils are restricted to deeper soils away from shallow bedrock and the inter-
mittent stream network. Hydropedologic units can be a valuable tool for 
informing watershed management, soil C accounting, and understanding bio-
geochemical processes and runoff generation.

Abbreviations: AIC, Akaike information criterion; DEM, digital elevation model; DI, 
downslope index; EAS, elevation above stream; EDb, Euclidean distance from bedrock 
outcropping; EDs, Euclidean distance from stream; Elev, elevation; FDs, flow distance from 
stream; HBEF, Hubbard Brook Experimental Forest; HPU, hydropedologic unit; LiDAR, 
light detection and ranging; MNR, multinomial logistic regression; NMS, nonmetric 
multidimensional scaling; PLAN, planform curvature; PROF, profile curvature; SLP, slope; 
TPI, topographic position index; TWId, topographic wetness index using downslope 
index; TWIs, topographic wetness index using slope; UAA, upslope accumulated area; 
UAAb, bedrock-weighted upslope accumulated area; WS3, Watershed 3.

Topography and hydrologic processes were long ago recognized as key fac-
tors affecting soil development ( Jenny, 1941; Bushnell, 1943). Hillslope 
shape influences water flow through soils and has been linked with soil 

variability and development (e.g., Pennock et al., 1987; Moore et al., 1993). 
Recently, it has been suggested that interdisciplinary approaches combining ex-
pertise from hydrology, pedology, and geomorphology, and emphasizing structure 
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and pattern to formulate hypotheses about system function, are 
critical to advancing our understanding of hydrologic processes 
(McDonnell et al., 2007). The emerging discipline of hydrope-
dology, or the integration of hydrology and soil science (Lin et 
al., 2006), provides a useful framework for examining soil spatial 
patterns in headwater catchments that offers insight into hydro-
logic dynamics and biogeochemical processes. The linkage be-
tween controls on flow pathways and soil development provides 
unique opportunities for mapping soils that consider the role of 
water in soil development at pedon to hillslope scales.

During the past two decades, technological advancements 
have facilitated an evolution of digital soil mapping approaches 
(Lagacherie et al., 2006; Boettinger et al., 2010). Soils can be rep-
resented as discrete units with sharp boundaries or as fuzzy units 
with gradual transitions, which may better reflect the continu-
ous variations present in soils. In addition, raster-based maps can 
differentiate small areas of distinct soil traditionally considered 
as unmapped inclusions in polygon-based map units derived 
using standard soil survey approaches. Uncertainty can also be 
conveyed using fuzzy representations, which permit membership 
of more than one soil type for each mapped unit and result in 
gradual transitions between soil units. Categorization, based on 
probability ranging from 0 (no confidence) to 1 (full confidence), 
can be used to assign fuzzy membership. One fuzzy approach to 
digital soil mapping involves logistic regression modeling using 
terrain variables to predict soil class probabilities (Debella-Gilo 
and Etzelmuller, 2009). Unlike multiple linear regression, logis-
tic regression is less demanding in terms of data characteristics 
such as normality, linearity, and equal variance of independent 
variables, and in particular it accommodates nonlinear relation-
ships in soil–landscape associations (Bailey et al., 2003b).

Although previous studies have demonstrated the utility 
of logistic regression as a quantitative approach to digital soil 
mapping, most made predictions using coarse digital elevation 
models (DEMs) of 25 m or greater grid size (e.g., Kempen et al., 
2009). Recently, high-resolution DEMs (1–10 m) derived from 
light detection and ranging (LiDAR) data have become more ac-
cessible, and their use for topographic analysis and topographic 
metric computation is increasingly commonplace. In pedogenic 
and geomorphologic applications, such topographic analyses are 
often used as surrogates for the spatial variation of hydrologic 
processes and conditions such as different soil moisture condi-
tions and flow patterns (Merot et al., 1995; Guntner et al., 2004) 
and thus may be useful for understanding soil variation as influ-
enced by the hydrologic condition (Gessler et al., 2000; Brown et 
al., 2004; Seibert et al., 2007).

The relationships among landscape, water, and soil have 
been critical components of biogeochemical research at the 
Hubbard Brook Experimental Forest (HBEF) (e.g., McDowell 
and Wood, 1984; Johnson et al., 2000; Palmer et al., 2004; 
Zimmer et al., 2013). Soils at the HBEF have been characterized 
as well-drained Spodosols with considerable spatial heterogene-
ity of physical and chemical properties (Huntington et al., 1988; 
Johnson et al., 2000), yet spatial averaging in soil investigations 

at the pedon scale to evaluate catchment-scale ecosystem pro-
cesses is common and does not allow an understanding of how 
soil spatial organization influences ecosystem processes (Bailey 
et al., 2014). More recent investigations have shown the fre-
quent occurrence of transient water tables (Detty and McGuire, 
2010) in steep upland catchments where the groundwater has 
been thought to not have an important role in catchment bio-
geochemical processes (Likens and Buso, 2006; Likens, 2013). 
Differences in the frequency and duration of water table incur-
sions in the solum (i.e., the soil profile above the C horizon) in 
various portions of the catchment lead to distinct soil horizo-
nation patterns and underscore the influence of downslope hy-
drologic flow on podzolization at the pedon to hillslope scales 
(Bailey et al., 2014; Gannon et al., 2014; Bourgault et al., 2015).

Field examination of soil morphological differences in 
Watershed 3 (WS3), one of the HBEF reference watersheds, led 
to the conceptualization of functional soil units reflecting dis-
tinctive hydrologic regimes (Bailey et al., 2014; Fig. 1). Focus on 
the pedon as the unit of soil study may lead to an overempha-
sis on water and solute transport and soil development as verti-
cal in nature (Zaslavsky and Rogowski, 1969), yet many studies 
have documented lateral components to water flow through 
soils (McDaniel et al., 1992) affecting podzolization (Sommer et 
al., 2000; Jankowski, 2013) and pedogenic processes in general 
(Sommer and Schlichting, 1997; Park and Burt, 2002). In steep 
topography or mountainous regions where subsurface heteroge-
neities or relatively shallow bedrock facilitate lateral water move-
ment, soil development patterns result in translocational catenas 
at the hillslope scale (Sommer et al., 2000; Bailey et al., 2014). 
Better recognition of lateral translocation of clays, organic acids, 
and dissolved metals could provide the basis for enhanced under-
standing of hydrologic, pedogenic, and biogeochemical processes 
and patterns at various scales from the pedon to the catchment.

Hydropedologic functional units (Lin et al., 2008) have 
been suggested as an alternative method for mapping soils, with 
units based on soils of similar pedologic and hydrologic func-
tions. In practice, these have been mapped by subdividing stan-
dard soil-series-based map units by variations in specific soil prop-
erties, such as surface horizon texture or depth to a clay layer, that 
are important to the hydrologic response (Zhu et al., 2013). The 
research at HBEF has developed differently because no detailed 
soil survey is available and the development of hydropedologic 
units (HPUs) was made independently of established soil series. 

Fig. 1. Conceptual representation of five hydropedologic units 
along an idealized hillslope toposequence (modified after Bailey 
et al., 2014).
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Rather, this was simply an attempt to describe the spatial varia-
tion in the soil horizon sequences observed, hypothesizing that 
these variations were due to differences in hydrologic regimes in 
different portions of a watershed (Bailey et al., 2014). This hy-
pothesis has stood up to analyses of the temporal variation in wa-
ter table fluctuations (Gannon et al., 2014) and micromorpho-
logical and chemical differences in spodic horizons (Bourgault 
et al., 2015). Thus the concept of an HPU is somewhat different 
from a hydropedologic functional unit sensu Lin et al. (2008) 
and has been defined as “a grouping of variations in soil mor-
phology that directly relate influence of water table regime, flow 
paths, and saturation to soil development” (Gannon et al., 2014).

Such an approach of mapping HPUs emphasizes hydrologic 
controls on soil development and material transfer between soil 
units along hydrologic catenas. If hillslope shape and position 
affect hydrologic processes that in turn influence soil develop-
ment, then topographic information should be useful in inter-
preting hydrologic processes and predicting soil attributes and 
soil morphological variation. This study aimed to apply digital 
soil mapping techniques using topographic metrics computed 
from a high-resolution DEM to predict the spatial distribution 
of HPUs across a 42-ha headwater catchment at the HBEF. We 
propose that mapping HPUs will facilitate a better understand-
ing of catchment functionality in terms of hydrology, biogeo-
chemistry, soil quality, and management concerns such as forest 
nutrition and soil C storage.

METHODS
Study Location

The HBEF (Fig. 2), located in the White Mountains of New 
Hampshire (43°56¢ N, 71°45¢ W), is maintained by the US Forest 
Service, Northern Research Station, and is part of the National 
Science Foundation Long-Term Ecological Research network. The 
experimental watersheds, including WS3, the hydrologic reference 
catchment, are underlain by mica schist 
and calc-silicate granulite of the Silurian 
Rangeley formation (Barton et al., 1997) 
and mostly covered by Wisconsinan gla-
cial drift of varying thickness, primarily 
composed of granitic rocks (Bailey et al., 
2003c). Soils are predominantly Spodosols 
of sandy loam to loamy sand texture devel-
oped in glacial drift parent materials (Bailey 
et al., 2014). Elevation ranges from 527 to 
732 m. The western side of the catchment is 
characterized by spurs flanking intermittent 
and perennial streams, whereas the eastern 
portion exhibits less dissected topography 
and less well developed stream channels 
(Fig. 3). Bedrock outcrops are most com-
mon along the ridge crests and the middle 
to upper portions of catchment boundaries.

Climate at the HBEF is humid con-
tinental. Winters tend to be long and 

cold, with an average January temperature of −9°C. Summers are 
mild, with July temperatures averaging 19°C (temperature aver-
ages recorded at 450-m elevation). Annual precipitation averages 
1400 mm, with about 30% falling as snow (Bailey et al., 2003a).

The catchment is dominated by second-growth north-
ern hardwood forest including sugar maple (Acer saccharum 
Marshall), American beech (Fagus grandifolia Ehrh.) and yellow 
birch (Betula alleghaniensis Britton), with shallow-to-bedrock 
areas dominated by red spruce (Picea rubens Sarg.) and balsam 
fir [Abies balsamea (L.) Mill.] interspersed with mountain white 
birch (Betula cordifolia Regel). The forest was partially harvested 
between 1870 and 1920, damaged by a hurricane in 1938, and 
is not currently aggrading (Siccama et al., 2007; Likens, 2013).

Soil Characterization
The study site is in a glaciated upland that has been de-

scribed as a catena of Lyman–Tunbridge–Becket series, with 
well-drained Spodosols of increasing depth from bedrock-
dominated ridges to lower slopes with thicker glacial drift 
(Huntington et al., 1988; Homer, 1999). Five HPUs (E, Bhs, 
typical, bimodal, and Bh podzols) displaying distinct horizona-
tion, a range of podzolization, and variation in the frequency 
and duration of transient groundwater saturation in the solum 
have been observed and described in WS3 (Fig. 1; Bailey et al., 
2014). The E podzols had an E horizon up to 40 cm thick and 
minimal or absent B horizon overlying a C horizon or bedrock. 
The E podzols occur in bedrock-controlled landscapes near the 
watershed divide where water tables rise into the solum for brief 
periods during rainfall events throughout the year. They are of-
ten interspersed with bedrock outcrops covered by mosses and 
lichens as well as Histosols in pockets of organic accumulation in 
bedrock depressions and outcrops. Together, these assemblages 
of E podzols, shallow Histosols, and bedrock outcrops are re-
ferred to as an E podzol complex (Fig. 1). The Bhs podzols are 

Fig. 2. Map of Hubbard Brook Experimental Forest, Watershed 3, and location within New 
England, United States.
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found downslope and adjacent to E podzols, with similar flashy 
water table response on an event basis but with a longer reces-
sion than the E podzols (Gannon et al., 2014). The Bhs pod-
zols tend to lack an E horizon but have an unusually thick Bhs 
horizon, up to 54 cm thick, that dominates the solum. The E 
and Bhs podzols are similar to the lateral podzols discussed by 
Sommer et al. (2000). Typical podzols best fit the established 
soil series for the region (Homer, 1999; Bailey et al., 2014), with 
thin and discontinuous E horizons overlying a sequence of Bhs 
and Bs horizons. Typical podzols comprise the majority of soils 
sampled in WS3 and are most commonly found on backslopes 

throughout the catchment. Groundwater monitoring in typi-
cal podzols shows infrequent incursions in the lower portion of 
the solum, suggesting that vertical unsaturated percolation is 
the dominant hydrologic process influencing soil development 
of this unit (Bailey et al., 2014; Gannon et al., 2014). Bimodal 
podzols are a transitional unit found at backslope to footslope 
positions downslope of typical podzols. These soils have an up-
per sequence resembling that of a typical podzol but also contain 
a Bh horizon of darker illuviated spodic material at the B–C in-
terface (Bourgault et al., 2015), where water tables rise into the 
lower solum seasonally and during events. The Bh podzols oc-

cur on topographic benches, swales, and in 
particular at streamside locations and are 
most influenced by saturated flow during 
frequent water table incursions into the 
solum during larger events in the summer 
and throughout the non-growing season 
(Bailey et al., 2014; Gannon et al., 2014). 
They are comprised of thick, dark Bh ho-
rizons for the majority of the solum and 
typically lack an E horizon.

Although defined somewhat differ-
ently in the U.S. soil taxonomy, Bailey et 
al. (2014) used a field designation of Bh 
for horizons with predominately a 10YR 
hue and a value and chroma of 3/3 or less 
in contrast to Bhs and Bs horizons that 
had a hue of 7.5YR or redder. Bourgault 
et al. (2015) showed that these horizons 
designated as Bh had a chemistry and mor-
phology distinct from Bhs and Bs horizons 
in typical podzols. The Bh horizons are 
found in bimodal and Bh podzols without 
an overlying E horizon but where the as-
sociated eluvial horizon is some distance 
upslope on the hillside.

A total of 172 hand-dug soil pits were 
described between 2008 and 2012 (Fig. 3). 
Fifty-nine soil sampling sites from Bailey 
et al. (2014) were included in this data set, 
and additional locations were selected to 
include the range of topographic and land-
scape positions in the catchment. Earlier 
sampling sites were positioned singly or 
along transects of three to six pits along 
hillslopes. In the present study, intensive 
transects and grids at 3- to 10-m inter-
vals were sampled across landforms and 
adjacent bedrock outcrops to document 
fine-scale soil morphological changes and 
transitions between HPUs. Each profile 
was described by horizon presence, depth, 
and color to designate genetic horizons 
and then assigned to an HPU based on 

Fig. 3. Map of soil pits, streams, and bedrock outcrops. A total of 172 soil pits were located 
in Watershed 3. Soil characteristics, including horizon thicknesses, Munsell color values, and 
texture, were used to designate genetic soil horizons and infer the hydropedologic unit. Light gray 
areas represent regions where bedrock is at or near the surface.
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the presence and relative thickness of soil horizons (Bailey et al., 
2014). Locations for each pit were determined using a Trimble 
Geo XT 2005 GPS unit equipped with a Trimble Hurricane 
Antenna. Data were differentially corrected using Trimble 
Pathfinder software and Continuously Operating Reference 
Station (CORS) data from the National Geodetic Survey to ob-
tain approximately 1-m precision of horizontal positions.

LiDAR Data Collection and 
Topographic Metric Computation

The LiDAR data were collected for the White Mountain 
National Forest in April 2012 by Photo Science, Inc., during leaf-
off and snow-free conditions. Points classified as ground were 
used to interpolate a 1-m DEM using Terrasolid (www.terrasol-
id.com). Ground return densities in WS3 were determined to be 
approximately 1.16 points m−2.

We coarsened and filtered the 1-m DEM through mean cell 
aggregation to a 5-m grid resolution. Calculation of the upslope 
accumulated area and topographic wetness index were found to 
be sensitive to DEM resolution, and the 5-m resolution best cap-
tured a range in these parameters that corresponded with the scale 
of landforms present in the catchment (Gillin et al., 2015). The 
DEM was treated with a low-pass smoothing filter over a nine-cell 
square neighborhood moving window to remove high-frequency 
data. A sink-filling algorithm (Wang and Liu, 2006) was applied 
to the DEM to maintain the downslope gradient and facilitate 
the computation of topographic metrics related to flow.

Numerous topographic metrics were computed from the 
filtered and filled DEM (Table 1) using ArcMap Version 10.1 
and the System for Automated Geoscientific Analyses (SAGA) 
(Conrad, 2011). Two slope parameters were calculated: the first 
(SLP) was calculated using the maximum slope algorithm (Travis 

et al., 1975) and the second (DI) using the downslope index (DI = 
d/Ld, where Ld is the horizontal distance to a point with an eleva-
tion d meters below the elevation of the starting cell following the 
steepest direction flow path [Hjerdt, 2004]). A value of 5 m was 
used for this analysis. The upslope accumulated area (UAA) was 
computed using the triangular multiple flow direction algorithm 
(Seibert and McGlynn, 2007). Subsequently, two versions of the 
topographic wetness index [TWI = ln(a/tanb), where a is the 
UAA and tanb is the local slope (Beven and Kirkby, 1979)] were 
computed. The TWIs used the maximum slope (SLP) for tanb 
and TWId used the DI for tanb. A single direction flow algorithm 
was used to compute the flow distance (FDs) from every cell to 
its drainage point on the stream network. Planform (PLAN) and 
profile (PROF) curvature were determined using the method of 
Zevenbergen and Thorne (1987). A topographic position index 
(TPI) was calculated by the difference between the elevation of 
each cell and the mean elevation for a neighborhood of cells in a 
moving circular window of 100-m radius centered on the target 
cell (Guisan et al., 1999). Positive values of TPI were generally 
associated with summit and shoulder positions, while negative 
values were associated with footslopes and toeslopes. Other geo-
graphic variables were computed including the Euclidean distance 
from stream channels (EDs) and bedrock (EDb).

A map of the portion of the watershed dominated by bed-
rock outcrops was made by visual inspection while walking tran-
sects and outcrop perimeters with a handheld GPS unit (Fig. 3). 
The potential influence of outcrops and shallow bedrock regions 
on the soil distribution was included as a new topographic met-
ric of bedrock-weighted UAA (UAAb). For any location in the 
catchment, this metric expresses the relative influence of bed-
rock outcrops and shallow bedrock regions in the UAA drain-
ing to that location. The UAAb metric was calculated using the 

Table 1. Topographic metrics evaluated for predicting soil group spatial distribution and Spearman correlation with ordination of 
presence or absence of genetic soil horizons and soil horizon thickness data using nonmetric multidimensional scaling (NMS).

Metric Variable Reference

Spearman correlation†

NMS 1 NMS 2 NMS 3
Raw elevation (m) Elev 0.32*** 0.32***

Slope (%) SLP Travis et al. (1975) 0.21**

Downslope index (%) DI Hjerdt (2004) 0.21**

Planform curvature PLAN Zevenbergen and Thorne (1987) 0.26***

Profile curvature PROF Zevenbergen and Thorne (1987) −0.29***

Elevation above stream (m) EAS SAGA‡ 0.36***

Euclidean distance from stream (m) EDs ArcMap 10.1 0.45*** 0.25** 0.22**

Flow distance from stream (m) FDs ArcMap 10.1 0.40*** 0.21**

Euclidean distance from bedrock (m) EDb ArcMap 10.1 −0.34*** −0.46***

Topographic wetness index [ln(m2)] TWIs Beven and Kirkby (1979) −0.35***

Topographic wetness index (downslope) [ln(m2)] TWId Hjerdt (2004) −0.35***

Upslope accumulated area (m2) UAA Seibert and McGlynn (2007) −0.35*** 0.16*

Bedrock-weighted upslope accumulated area UAAb this study 0.20** 0.44***

Topographic position index (m) TPI Guisan et al. (1999) 0.28*** 0.31***
* p < 0.05.
** p < 0.01.
*** p < 0.001.
† Spearman correlations are provided for each of the NMS axes. Only correlations with p < 0.05 are shown.
‡ System for Automated Geoscientific Analyses (Conrad, 2011).

www.terrasolid.com
www.terrasolid.com
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triangular multiple flow direction accumulated area algorithm 
(Seibert and McGlynn, 2007) within SAGA using a weighting 
grid. The weighting grid was created by assigning large weight 
values (105) to all bedrock outcrop cells and a zero weight to all 
other cells. The ratio of the weighted UAA to the unweighted 
UAA was normalized so that it varied between 0 and 1 and val-
ues closer to 1 had the highest proportions of bedrock in the 
upslope area. This normalized ratio of the weighted UAA to the 
unweighted UAA is the UAAb.

Ordination of Soil Data Using 
Nonmetric Multidimensional Scaling

The distinctness of the HPUs and their relationship to top-
ographic metrics was examined using a nonmetric multidimen-
sional scaling (NMS) ordination of the thickness of the genetic 
soil horizons at each sampling pit. We selected the Bray–Curtis 
dissimilarity (Bray and Curtis, 1957) as the measure of distance 
in the ordination space because it has been shown to be useful in 
the analysis of nonlinear ecological gradients (Faith et al., 1987). 
We examined the ordination of HPU data in both two and three 
dimensions to determine the number of dimensions required to 
reduce Kruskal’s stress criterion (Clarke, 1993). Finally, a biplot 
of the topographic metrics, represented by Spearman correlates 
(vectors), was placed over the NMS ordination, and the correla-
tion significance for each topographic metric to the distribution 
of HPUs in the ordination space was examined (p = 0.05).

Multinomial Logistic 
Regression Model Development

A logistic regression approach was used to probabilistically 
model HPUs using topographic independent variables (e.g., 
Kempen et al., 2009). Relationships between topographic met-
rics and soil type are often nonlinear, yet logistic regression mod-
els are suitable linear models for handling nonlinear relation-
ships, particularly when the dependent variable is the probability 
of presence (Bailey et al., 2003b).

In a logistic regression model for predicting membership 
in various HPUs, the dependent (response) variables, Yi, are the 
HPUs, where i = 1, …, n and n is the total number of HPUs pres-
ent. Response probabilities are denoted p1, …, pn and represent 
the probability of the occurrence of Yi as pi. Logistic regression 
relates the probability of occurrence in a group, e.g., p1, to a set 
of predictor variables using the logit transformation to linearize 
the problem. Consider the following example for a binomial case 
of n = 2 groups:

( ) 1 1
1

2 1

logit ln ln
1

p pp
p p

   
′= = =   −   

Xb  [1]

where X is a vector of predictor variables and b is a vector of mod-
el coefficients. Equation [1] can be expressed as the odds ratio:

( )1

1

exp
1

p
p

′=
−

Xb  [2]

Equation [2] can be used to derive the response probability for 
Group 1:
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1 exp

p
′

=
′+

X
X

b
b
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This binomial example can be expanded to describe multinomial 
situations with more than two outcomes (n > 2). In the case of 
this study, n HPUs correspond with a response variable with n 
outcomes, and the probability of occurrence for any of these out-
comes i is determined as

( )
( ) ( ) ( )1 1 2 2

exp
exp exp ... exp

i i
i

n n

p
′

=
′ ′ ′+ + +

X
X X X

b
b b b

 [4]

So, for a given point on the landscape, the regression model pro-
vides a probability for HPU 1, HPU 2, HPU 3, HPU 4, and 
HPU 5, and the probability values sum to 1.

Logistic regression requires that a reference dependent vari-
able be used to make comparisons with all other dependent vari-
ables. We selected typical podzols, the dominant soil in WS3, as 
the reference variable to which all other HPUs were compared. 
A final predictor model was selected based on a number of model 
quality indicators, including the Akaike information criterion 
(AIC) (Campling et al., 2002), McFadden’s pseudo R2, the log-
likelihood ratio test (Kempen et al., 2009), and the significance 
(p < 0.05) of a topographic metric as an independent variable for 
at least one of the HPUs.

Although dozens of topographic metrics may be comput-
ed using a DEM, it was likely that only a few were necessary to 
predict HPU distribution. Furthermore, the logistic regression 
model may have been limited by multicollinearity or failed to 
achieve model convergence if too many topographic metrics 
were used as predictor variables. The strongest correlations 
(positive and/or negative) between topographic metrics and 
NMS dimensions, as well as metric uniqueness in NMS space, 
were used to identify candidate topographic metrics for multi-
nomial logistic regression (MNR). Combinations of candidate 
topographic metrics were systematically tested during MNR 
model development. First, a metric exhibiting strong correlation 
was tested alone. Then, a second metric with strong correlation 
in a different direction was added and the model was retested, 
until all possible models were assessed. The MNR models were 
evaluated using the aforementioned criteria (AIC, McFadden’s 
pseudo R2, and the log-likelihood ratio test). This process was 
repeated until all plausible models were assessed.

Validation Data Set and Model Accuracy
Two methods were used to assess model accuracy. Twenty-

five percent of the total number of sites for each HPU (n = 5 
E, 7 Bhs, 17 typical, and 9 Bh podzols) were randomly removed 
before model development for use as a validation data set. The 
mean prediction probability of each HPU validation data set 
was computed. Model accuracy was also assessed using error ma-
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trices (Congalton and Green, 2008). Field-classified HPUs were 
compared with model predictions for probabilities ranging from 
0.30 to 0.80 at intervals of 0.10 for a total of six matrices. Error 
matrices were used to interpret the overall accuracy—the num-
ber of field observations correctly classified by the model as a per-
centage of the total number of field observations. Overall accura-
cies, as well as the number of pedons captured by the model at a 
given probability threshold as a percentage of the total number 
of pedons considered, were computed for each error matrix and 
examined to determine the best model probability for predicting 
HPUs in WS3.

RESULTS
Hydropedologic Unit Ordination

Kruskal’s stress criterion for the two-dimensional ordina-
tion was 0.20. Stress decreased to 0.12 with the addition of the 
third dimension. Kruskal’s stress criterion values should be <0.2 
to mitigate the risk of drawing false inferences (Clarke, 1993). 
Thus, a three-dimensional solution was used for this analysis. 
Examination of the NMS ordination of soil horizon presence 
and thickness data in the first two dimensions showed E, Bhs, 
typical, Bh, and bimodal podzols 
separated into groups (Fig. 4). The 
E, Bhs, typical, and Bh podzols also 
exhibited clustering in Dimensions 
1 and 3, whereas bimodal podzols 
did not exhibit strong clustering 
(Fig. 4). Lengths of the vectors in 
Fig. 4 indicate Spearman correlation 
strength between the topographic 
metrics and the ordination dimen-
sions. All correlations except PROF 
were significant in Dimension 1, 
only EDs, PLAN, and TPI correla-
tions were significant in Dimension 
2, and all correlations except el-
evation above stream (EAS), SLP, 
TWIs, TPI, and DI were significant 
in Dimension 3 (p = 0.05; Table 1). 
Overall, the strongest correlations 
for almost all topographic metrics 
occurred in Dimensions 1 and 3. Of 
the variables with the strongest cor-
relations and greatest significance, 
EDb, both TWI variants, and UAA 
were positively correlated with the 
Bh and bimodal podzols and nega-
tively correlated with the E, Bhs, 
and typical podzols (Fig. 4). The 
UAAb, EDs, FDs, Elev, and TPI 
metrics were positively correlated 
with E, Bhs, and typical podzols and 
negatively correlated with Bh and 
bimodal podzols (Table 1; Fig. 4).

Multinomial Logistic Regression 
and Predicted Soil Spatial Patterns

Bimodal podzols were excluded from MNR model devel-
opment because of weak clustering in the ordination space and 
limited correlation with topographic metrics. After 25% of E 
podzol complex, Bhs, typical, and Bh podzols were removed for 
model validation, a total of 116 pedons remained for model de-
velopment. The subset of topographic metrics that produced the 
best logistic regression model (the lowest AIC and highest R2) 
included TWId, EDb, UAAb, and TPI. This model had an AIC 
of 157 and a McFadden’s pseudo R2 of 0.55 (log-likelihood ratio 
test statistic = 166, degrees of freedom = 12, p < 0.001). Table 
2 provides MNR model output for the best subset model. The 
TWId metric was significant for predicting Bh podzols, EDb 
was significant for predicting E and Bhs podzols, UAAb was 
significant for predicting Bhs podzols, and TPI was significant 
for predicting Bh podzols (p = 0.05). The odds ratio represents 
the likelihood of a given HPU compared with the reference soil 
group, the typical podzol, predicted by a given topographic met-
ric for every one-unit increase in metric value. For example, for 
each 1-m increase in EDb, there is an associated 79% decrease in 

Fig. 4. Nonmetric multidimensional scaling (NMS) ordination using the Bray–Curtis dissimilarity with 
topographic metrics overlain as Spearman correlates demonstrated hydropedologic unit similarity 
through clustering in NMS space. Topographic metrics are downslope index (DI), elevation above stream 
(EAS), Euclidean distance from bedrock outcropping (EDb), Euclidean distance from stream (EDs), 
elevation (Elev), flow distance from stream (FDs), planform curvature (Plan), profile curvature (Prof), 
slope (Slp), topographic position index (TPI), topographic wetness index using DI (TWId), topographic 
wetness index using Slp (TWIs), upslope accumulated area (UAA), and bedrock-weighted upslope 
accumulated area (UAAb). Bimodal podzols did not cluster in Dimensions 1 and 3, which produced 
the lowest Kruskal’s stress criterion, and were therefore excluded from multinomial logistic regression 
model development.
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the likelihood, compared with the typical podzol, that the HPU 
present will be an E podzol.

Graphical representation of HPU probabilities based on 
topographic metrics aids in conceptualization of the odds ra-
tios (Fig. 5). Each metric did not necessarily predict a prob-

ability of occurrence for the four HPUs included in the 
MNR model (e.g., TPI was not useful for predicting E or 
Bhs podzols). Hydropedologic unit graphical probability 
representations for each topographic metric are based on 
holding other metrics in the model at their mean values. 
For example, E-complex or Bhs podzols were more likely 
to occur with low EDb, indicating that proximity to bed-
rock outcrops was important for those HPUs. However, 
with increasing distance from bedrock, the soil is probably 
a typical or Bh podzol. Probability curves for TWId indi-
cated that for lower TWId values soils are more likely to be 
typical podzols, and with increasing TWId soils are more 
likely to be Bh podzols. The UAAb was best suited for pre-
dicting typical and Bh podzols. Negative TPI values were 
associated with Bh podzols, whereas positive TPI values 
were associated typical podzols.

Model coefficients (b values; see Eq. [1] and [2]) from 
the MNR model were used to create probabilistic maps 
for the spatial distribution of HPUs in WS3 (Fig. 6). The 
E-complex and Bhs podzols were predicted to occur only 
in the region of the catchment with a bedrock-controlled 
landscape. The Bh podzols were predicted with the highest 
probability to occur near streams, with lower a probability 

of occurrence in less steep areas near the catchment divide and 
no probability elsewhere. Typical podzols were predicted to oc-
cur primarily in backslope positions. Predictor variables that in-
cluded flow accumulation components (i.e., TWId and UAAb) 
created a network-like structure in the distribution of podzols 

across the catchment.

Model Validation and Measures 
of Categorical Accuracy

Thirty-eight validation pedons, representing 
25% of the total number of pedons (excluding bi-
modal podzols), were used for model validation. 
Typical podzol validation pedons achieved a mean 
prediction probability of 0.72 with a standard er-
ror (SE) of ±0.07, E-complex validation pedons 
achieved a mean of 0.42 (SE ± 0.08), Bhs podzol vali-
dation pedons achieved a mean of 0.51 (SE ± 0.09), 
and Bh podzol validation pedons achieved a mean of 
0.54 (SE ± 0.13) (Fig. 7).

In general, as the model prediction probability 
increased, the overall model accuracy also increased 
but the number of pedons captured decreased (Fig. 
8). Maximization of accuracy and the number of pe-
dons classified by the model occurred at a probability 
of about 0.60 (Table 3). Overall model accuracy at the 
0.60 prediction probability value, determined by di-
viding the sum of all true positives by the total number 
of pedons in the error matrix, was 0.80. Note that 45 
of the 154 pedons used for MNR model development 
failed to achieve probability ³0.60 for any podzol type 
and thus were not included in the error matrix.

Table 2. Multinomial logistic regression model output for the best set 
of predictor topographic metrics, which included the topographic 
wetness index using the downslope index for the tanb parameter 
(TWId), Euclidean distance from bedrock outcropping (EDb), bedrock-
weighted upslope accumulated area (UAAb), and the topographic 
position index (TPI). Beta values are the model coefficients, SE is the 
standard error of the coefficient, t is the t-statistic for the coefficient, 
and the p value is the probability. The odds ratio represents the likeli-
hood of a given soil type compared with the baseline soil type (typi-
cal podzols) when a given topographic metric is used for prediction. 
Model selection criteria included Akaike information criterion = 157, 
McFadden’s R2 = 0.55, and log-likelihood ratio statistic = 166.

Soil type Predictor b SE t p Odds ratio

E complex

TWId 0.345 0.600 0.575 0.566 1.412

EDb −0.188 0.047 −3.998 0.000 0.790

UAAb 4.302 3.355 1.282 0.200 2.578

TPI 0.0850 0.1853 0.4586 0.6465 1.089

Bhs podzols

TWId 0.5380 0.570 0.943 0.345 1.713

EDb −0.071 0.028 −2.538 0.011 0.931

UAAb 7.706 3.469 2.221 0.026 2221

TPI −0.052 0.200 −0.262 0.793 0.9489

Bh podzols

TWId 0.922 0.287 3.212 0.001 2.514

EDb 0.003 0.007 0.365 0.715 1.003

UAAb −0.548 3.317 −0.165 0.869 0.578

TPI −0.567 0.193 −2.942 0.003 0.567

Fig. 5. Multinomial logistic regression (MNR) probabilities for E, Bhs, typical, and 
Bh podzols predicted by the topographic wetness index using the downslope index 
(TWId), Euclidean distance from bedrock outcropping (EDb), bedrock-weighted 
upslope accumulated area (UAAb), and the topographic position index (TPI). Bimodal 
podzols were not included in the MNR because nonmetric multidimensional (NMS) 
scaling ordination indicated that they were not well correlated with any topographic 
metrics in the most important NMS dimensions. Each metric did not necessarily 
predict a probability of occurrence for the four hydropedologic units included in the 
MNR model (e.g., TPI was not useful for predicting E or Bhs podzols).
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DISCUSSION
Nonmetric Multidimensional Scaling Ordination 
Indicated Clustering of Most Hydropedologic Units

We expected HPUs to cluster in the NMS ordination based 
on the tendency for each to exhibit characteristic morphological 
attributes related to the presence and thickness of genetic hori-
zons. For instance, E podzols are comprised of a thick eluviated 
horizon with or without a thin Bhs horizon over bedrock, while 
Bh podzols develop thick Bh horizons dominating most of the 
solum. Indeed, the similarity of horizon presence and thickness 
for each podzol type is reflected in the grouping indicated by the 
NMS ordination, suggesting that the HPUs serve as viable and 
distinct groups.

Bimodal podzols proved somewhat of an exception to clus-
tering in the NMS ordination, exhibiting weak clustering in 
Dimensions 1 and 2 but no clustering in Dimensions 1 and 3. 
While this group exhibits a characteristic horizon sequence of 
an anomalously dark Bh horizon at the base of the solum, it is 
perhaps the most variable in terms of the thickness of horizons. 
Although occurring most frequently in near-stream areas, bi-
modal podzols can also be found away from streams at hillslope 
benches where water tables develop in the lower solum season-
ally and persist for several weeks or longer (Bailey et al., 2014). 
Furthermore, field investigations indicated that although bimod-
al podzols represent a transition between typical and Bh podzols, 
the width of the transition is variable and often narrow, in some 
cases occurring across a few meters. Thus, bimodal podzol distri-
bution may be visualized as a linear feature at the boundary be-
tween typical and Bh podzols, and their expected location can be 
interpreted from the MNR model results by finding areas where 
typical podzols transition to Bh podzols on the probability map 
(Fig. 6).

It was anticipated that UAAb and EDb would be useful for 
predicting E and Bhs podzols because these HPUs are always 
found immediately downslope of outcroppings or shallow-to-
bedrock areas. The UAAb and EDb metrics were also useful for 
predicting typical and Bh podzols, which are more likely to occur 
farther away from outcrops and tend to have a smaller propor-
tion of their upslope area in the bedrock-controlled landscape. 
The TWI proved a valuable metric for predicting typical and Bh 

podzols. This was expected because 
soil physical properties such as hori-
zon thickness have been correlated 
with TWI in previous studies (e.g., 
Seibert et al., 2007). Both TWI 
variants exhibited strong correla-
tions with HPU clustering in the 
NMS, but MNR results indicated 
that TWId was a better predictor 
than TWIs. The TPI was most use-
ful for predicting Bh podzols that 
tend to occur on footslopes or toes-
lopes and typical podzols that tend 
to occur on backslopes. Our analysis 

did not find TWI or TPI useful for predicting E or Bhs podzols, 
probably because formation of these HPUs is most influenced by 
bedrock-controlled landscapes and less influenced by changes in 
slope or upslope area.

Profile curvature exhibited the second-weakest correlation 
with podzol groupings in NMS Dimension 2 and was the only 
topographic metric that failed to achieve a significant correla-
tion in Dimension 1 (p = 0.88 and 0.86, respectively). Previous 
researchers reported that profile curvature is a primary geomor-
phic parameter important for understanding surface processes 
(Schmidt et al., 2003). However, previous analyses finding the 
importance of curvature utilized DEMs of 10-m resolution or 
coarser. This study suggests that the importance of profile curva-
ture may be less when using DEMs of resolutions finer than 10 
m or for mapping of soils in a hydrologic context. Application 
across broader or more topographically diverse areas than our 

Fig. 6. Probabilistic hydropedologic soil maps of Watershed 3 for E, Bhs, typical, and Bh podzols.

Fig. 7. Mean probability and standard error for each set of validation 
hydropedologic unit pedons. Validation pedons were excluded during 
multinomial logistic regression model development.
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study area may find this metric to be more useful. In WS3, two 
contrasting groups, E podzols and typical podzols, both show 
the full range in profile curvature seen for all five HPUs consid-
ered (Bailey et al., 2014).

Predicted Soil Spatial Patterns 
and Soil Development

In general, HPU predictions matched field observations and 
the current understanding of pedogenic and hydrologic spatial 
variation in WS3. The E podzols were predicted near bedrock, 

Bhs podzols were predicted downslope 
of E podzols, Bh podzols were predicted 
adjacent to streams, and typical podzols 
were predicted everywhere else (Fig. 6). 
Bimodal podzols were excluded during 
model development but can be interpreted 
to occur at the typical–Bh podzol transi-
tion zone.

Variation in the predicted probabili-
ties among HPUs (Fig. 7) has several pos-
sible explanations. Multinomial logistic 
regression (MNR) can be biased by a dis-
proportionate number of samples between 
groups (Real et al., 2006). In WS3, typical 
podzols are the dominant HPU and rep-
resent the largest number of pedons in the 
sample data set used to develop the MNR 
model (followed by Bh, Bhs, and finally 
E-complex). The uneven number of samples 
has the potential to bias model predictions 
toward HPUs with more samples. This may 
explain why typical and Bh podzols had a 
higher mean prediction probability than 
E or Bhs podzols. Furthermore, the E and 
Bhs podzol extent is more variable than 
the more prevalent (typical podzols) or less 
variable (Bh podzols) soil units. Thus, it can 
be expected that the accuracy of their pre-

diction will be somewhat lower. Finally, since the occurrence of 
E and Bhs podzols is always associated with bedrock-controlled 
landscapes, the predictive capability of the MNR model is limited 
by the accuracy of the bedrock outcrop map.

Five field-identified Bh podzols located ³20 m from the 
nearest mapped stream occurred in the southeast portion of the 
catchment where stream channels are poorly defined or absent, yet 
digital terrain analyses indicated high TWIs, TWId, and UAA 
values. These Bh podzols occurred on slopes of 10 to 20%, which 
is less steep than most slopes in WS3 but generally similar to slopes 
in near-stream areas. In this region, four of five Bh podzols found 
away from streams were correctly mapped. The pedogenesis of Bh 
podzols is hypothesized to be related to lateral subsurface flow pro-
cesses and the development of more persistent water tables, which 
frequently saturate much of the solum (Bailey et al., 2014; Gannon 
et al., 2014). Typically, such conditions are found within 5 to 10 m 
of a stream in areas that remain saturated for longer periods follow-
ing storm events or during the non-growing season. These hillslope 
Bh podzols appear to be associated with low slope benches with 
larger UAA or TWI values and could also be influenced by zones 
of lower parent material conductivity. Gannon et al. (2014) distin-
guished hillslope and near-stream Bh podzols as separate HPUs 
based on greater and more frequent variation in water table depth 
in the hillslope variant.

The utility of mapping soils by HPUs can be illustrated by 
combining the individual probabilistic maps from MNR (Fig. 6) 

Fig. 8. Multinomial logistic regression model accuracy was assessed using error matrices 
comparing hydropedologic units (HPUs) identified in the field with those classified by the logistic 
regression model across a range of prediction probabilities. The resulting categorical accuracy 
values, as well as the number of pedons captured by the model as a percentage of the total pedons 
considered, were examined in a scatterplot. The best model probability for predicting HPUs in 
Watershed 3 occurs when accuracy measures and number of pedons captured are maximized 
(i.e., where the curves intersect).

Table 3. Error matrix for the multinomial logistic regres-
sion model with a prediction probability threshold of 0.60. 
Reference data refers to field observations and classified data 
refers to model predictions. Values indicate agreement or 
disagreement between field observations and model predic-
tions. For instance, 48 pits identified as typical podzols in the 
field were also classified as typical podzols by the model, but 
six were incorrectly classified as Bh podzols. Overall accu-
racy (sum of correctly mapped hydropedologic units [HPUs] 
divided by the sum of total mapped HPUs) was 80%, and 
71% of the pedons were captured.

Classified data 
(mapped)

Reference data (field)

TotalTypical E Bhs Bh
Typical 48 0 0 9 57

E 0 7 1 0 8

Bhs 3 3 11 0 17

Bh 6 0 0 21 27

Total 57 10 12 30
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into a single map based on the one soil unit with >40% occur-
rence in each grid cell (Fig. 9). This approach chooses a single 
most likely soil unit for each cell while leaving very few cells 
unclassified. Such a map provides a spatial representation of the 
translocational catena proposed by Bailey et al. (2014) to explain 
patterns of podzolization at HBEF and shown by Bourgault et 
al. (2015) to describe differences in the color, morphology, and 
chemistry of spodic horizons. The map highlights regions domi-
nated by lateral eluviation or lateral illuviation and shows that 
only about half the catchment is dominated by podzolization 
processes occurring under vertical percolation at the pedon scale. 
The E podzols represent portions of the landscape where lateral 
eluviation is a dominant pedogenic process. This agrees with 
Zimmer et al. (2013), who showed that concentrations of Al and 
dissolved organic C were elevated in the groundwater in this soil 
unit. The Bhs and Bh podzols indicate portions of the catchment 
where lateral illuviation is a dominant pedogenic process, which 
is reflected by a broader depth distribution of C through the soil 
profile (Bailey et al., 2014).

Development of this HPU map (Fig. 9) differs from pre-
vious applications of hydropedologic concepts to define map 
units (Lin et al., 2008; Zhu et al., 2013) in that it does not build 
on existing high-intensity soil surveys. Thus, none of the expert 
delineation of soil polygons typical to soil survey went into its 
development. Rather, it is simply based on a statistical analysis, 
via the NMS and MNR, of relationships between topographic 
and bedrock metrics and soil horizonation patterns. Thus, the 
statistical development acts as an objective test of the validity of 
the HPUs as distinct soil groups and of their predictability based 
on landscape position. Furthermore, independence from estab-
lished soil series highlights the distinctness of the HPUs from 
previously established map units. In our study area, soil series in 
shallow to bedrock landscapes are the Lyman and Tunbridge se-
ries, considered to be somewhat excessively to well drained. The 
hydropedologic approach taken by this study illuminates that 
bedrock-controlled portions of this region may be characterized 
by less well drained conditions, with the water table extending 
well into the solum on nearly an event basis. Such contrasts in 
drainage may have important implications for the management 
and understanding of the biogeochemistry of these landscapes.

Implications for Runoff Processes and Soil Carbon
In general, mapping the spatial distribution of soils defined 

as HPUs offers novel insights into subsurface hydrologic dynam-
ics and biogeochemical processes. Areas that experience flashy 
water table incursions in the solum during storm events or snow-
melt (E and Bhs podzols), areas that experience the development 
of seasonal to perennial water tables (Bh and bimodal podzols), 
and areas that follow the more traditional view of vertical unsatu-
rated water percolation through the soil (typical podzols) all can 
be interpreted from the podzol distribution maps (Fig. 6 and 9). 
The spatial extent of HPUs that experience water tables in the B 
horizons for various periods of time challenges previous notions 
that these steep, upland, coarse-textured soils are well drained. 

Rather, these transient and seasonal water tables suggest sharp 
spatial gradients in drainage conditions. Gannon et al. (2014) 
found that subsurface flow was initiated at different threshold 
levels of combined catchment storage and event rainfall for dif-
ferent HPUs.

The ability to map these soils and identify when subsurface 
flow is occurring also suggests that runoff generation processes 
can be spatially predicted. Near-stream Bh podzols behave in 
a manner consistent with the classic concept of variable source 
areas, where water tables develop most quickly and frequently, 
directly leading to streamflow generation (Hewlett and Hibbert, 
1967; Dunne et al., 1975). Bedrock-controlled landscapes more 
distal from stream networks have not been as well recognized as 
active streamflow generation areas. But frequent water table in-
cursions in E and Bhs podzols and expansion of the ephemeral 
to intermittent portions of the drainage network during events 
suggest that these areas can act as contributing areas to runoff 
generation (Gannon et al., 2014).

Likewise, biogeochemical processes might be expected to 
vary with these HPUs. For example, Morse et al. (2014) found 
strong links between biogeochemical cycling and mineral soil C, 
suggesting that deeper C accumulation than is typically consid-
ered in biogeochemical studies may be an indicator of C and N 

Fig. 9. Map of hydropedologic units (HPUs) of Watershed 3 derived from 
classifying each cell by the unit most likely to occur in the multinomial 
logistic regression. Cells where no one HPU was predicted to have 
an occurrence of 40% or more remained unclassified and are shown 
as white cells. This map highlights differences in soil formation due to 
hydropedologic processes, including zones where lateral eluviation 
(E podzols) or lateral illuviation (Bhs and Bh podzols) vs. vertical 
podzolization (typical podzols) predominate.
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cycling capacity at the catchment scale. Wexler et al. (2014) found 
isotopic evidence for denitrification along intermittent portions 
of the stream network in WS3 during summer conditions when 
streamflow was not present but when water tables were still pres-
ent in near-stream Bh podzols. Hydropedologic mapping (Fig. 
10) of water table variations might provide a way to scale these 
observations to the catchment, suggesting the possibility for clos-
ing a long-standing gap in understanding of forest N cycles.

The soil maps (Fig. 6 and 9) generated from our model sug-
gest a greater spatial extent of C-rich soils (Bh, bimodal, and Bhs 
podzols) in HBEF watersheds than indicated by previous studies 
(Huntington et al., 1988; Fahey et al., 2010), which has impli-
cations for soil C accounting and C fate in a changing climate. 
Bailey et al. (2014) provided average profile C content estimates 
for each of the HPUs in this study. Using the model presented 
here, their C content estimates, and a 40% probability threshold 
for HPU classification, the area-weighted average soil C estimate 
for WS3 is 20.0 (±3.6) kg m−2. This is 27% greater than previ-
ously estimated for Hubbard Brook (Fahey et al., 2010) based 
on an unweighted mean of all soil samples collected. Thus, strati-
fying field samples and calculations based on HPUs may better 
capture the contribution of less common soil units to overall 
catchment C sequestration.

Long-term climate forecasts for New England have predict-
ed that the region will experience a 3 to 5°C rise in temperature, 

increased evapotranspiration leading to as much as a 31% 
reduction in streamflow, and a decrease in the amount and 
duration of snow cover (Hayhoe et al., 2006; Campbell et 
al., 2011). These conditions will affect groundwater dy-
namics and may interact in complex ways to influence min-
eral soil C storage. This is particularly important because 
soils with higher C content in B horizons are associated 
with frequently saturated conditions (Bailey et al., 2014) 
in variable source areas of the catchment (Fig. 9 and 10). 
Laterally deposited spodic C has a distinct morphology 
and associated metal chemistry compared with vertically 
deposited spodic C (Bourgault et al., 2015). While these 
C stores might be considered to have been accumulated 
slowly and to be stable in the future, it is unknown whether 
a change in the hydrologic regime in these horizons might 
alter sequestration or destabilize storage in the future.

CONCLUSIONS
To gain a better understanding of the hydrologic and 

biogeochemical functioning of headwater catchments, we 
used a hydropedologic framework to map the distribution 
of soils using topographic and bedrock outcrop metrics 
as predictor variables in an MNR model. An ordination 
of soil horizon data using NMS indicated that the TWI, 
EDb, UAAb, and TPI exhibited the strongest correlations 
with HPU clustering. Our model indicated that in small 
headwater systems at HBEF, these four topographic met-
rics were well correlated to HPUs defined by the presence 
and thickness of genetic horizons.

While this analysis has been confined to a single head-
water catchment, we suggest that the HPUs developed here may 
be typical of a much broader area of the northeastern United 
States and adjacent Canada where Spodosols dominate under 
the influence of cool humid conditions, forest vegetation, and 
relatively acidic, coarse-textured parent materials. Furthermore, 
landscapes dominated by mosaics of outcrops and shallow bed-
rock in steep upland positions are typical of a much broader area, 
suggesting the possibility of analogous variations in soil drain-
age and water table regime in similar settings but across a much 
broader range of soil orders.

Analysis of the spatial patterns of HPUs provides a better 
hydrologic and biogeochemical context and a more process-
based understanding of the spatial heterogeneity of soil and land 
management characteristics than traditional soil map units, of-
fering an important complement to taxonomically based surveys. 
Soil HPU probability maps offer information about the spatial 
distribution of soils that can be used to interpret hydrologic and 
biogeochemical function within a catchment. Subsurface flow 
paths, water table fluctuations, C storage in soils, and perhaps 
ecological communities and variations in productivity may be 
inferred from examination of the spatial pattern of HPUs.
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